Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695707

RESUMO

Electrophile-promoted cyclizations of functionalized alkynes offer a useful tool for constructing halogen-substituted heterocycles primed for further derivatization. Preinstallation of an iodo-substituent at the alkyne prior to iodo-cyclization opens access to ortho di-iodinated heterocyclic precursors for the preparation of unsymmetrical heterocycle-fused enediynes. This general approach was used to prepare 2,3-diiodobenzothiophene, 2,3-diiodoindole, and 2,3-diiodobenzofuran, a useful family of substrates for systematic studies of the role of heteroatoms on the regioselectivity of cross-coupling reactions. Diiodobenzothiophene showed much higher regioselectivity for Sonogashira cross-coupling at C2 than diiodoindole and diiodobenzofuran. As a result, benzothiophene can be conveniently involved in a one-pot sequential coupling with two different alkynes, yielding unsymmetrical benzothiophene-fused enediynes. On the other hand, the Sonogashira reaction of diiodoindole and diiodobenzofuran formed considerable amounts of di-substituted enediynes in addition to the monoalkyne product by coupling at C2. Interestingly, no C3-monocoupling products were observed for all of the diiodides, suggesting that the incorporation of the 1st alkyne at C2 activates the C3 position for the 2nd coupling. Additional factors affecting regioselectivity were detected, discussed and connected, through computational analysis, to transmetalation being the rate-determining step for the Sonogashira reaction. Several enediynes synthesized showed cytotoxic activity, which is not associated with DNA strand breaks typical of natural enediyne antibiotics.

2.
J Org Chem ; 89(8): 5699-5714, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38564503

RESUMO

Four heteroatoms dance in the cascade of four pericyclic reactions initiated by ozonolysis of C═N bonds. Switching from imines to semicarbazones introduces the fifth heteroatom that slows this dance, delays reaching the thermodynamically favorable escape path, and allows efficient interception of carbonyl oxides (Criegee intermediates, CIs) by an external nucleophile. The new three-component reaction of alcohols, ozone, and oximes/semicarbazones greatly facilitates synthetic access to monoperoxyacetals (alkoxyhydroperoxides).

3.
J Am Chem Soc ; 146(6): 4187-4211, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38316011

RESUMO

Although Bu3Sn-mediated radical alkyne peri-annulations allow access to phenalenyl ring systems, the oxidative termination of these cascades provides only a limited selection of the possible isomeric phenalenone products with product selectivity controlled by the intrinsic properties of the new cyclic systems. In this work, we report an oxidant-free termination strategy that can overcome this limitation and enable selective access to the full set of isomerically functionalized phenalenones. The key to preferential termination is the preinstallation of a "weak link" that undergoes C-O fragmentation in the final cascade step. Breaking a C-O bond is assisted by entropy, gain of conjugation in the product, and release of stabilized radical fragments. This strategy is expanded to radical exo-dig cyclization cascades of oligoalkynes, which provide access to isomeric π-extended phenalenones. Conveniently, these cascades introduce functionalities (i.e., Bu3Sn and iodide moieties) amenable to further cross-coupling reactions. Consequently, a variety of polyaromatic diones, which could serve as phenalenyl-based open-shell precursors, can be synthesized.

4.
Molecules ; 28(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959754

RESUMO

We report an unusual transformation where the transient formation of a nitrene moiety initiates a sequence of steps leading to remote oxidative C-H functionalization (R-CH3 to R-CH2OC(O)R') and the concomitant reduction of the nitrene into an amino group. No external oxidants or reductants are needed for this formal molecular comproportionation. Detected and isolated intermediates and computational analysis suggest that the process occurs with pyrazole ring opening and recyclization.

5.
J Org Chem ; 88(19): 13782-13795, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37724879

RESUMO

Relief of stereoelectronic frustration drives the acid-catalyzed three-component condensation of ß,δ'-triketones with hydrazides and H2O2 to the direction where both nucleophiles and all three electrophilic carbons are involved in the formation of a tricyclic sp3-rich ring system that includes four heteroatoms. The otherwise inaccessible tricyclic N-substituted aminoperoxides are prepared rapidly and selectively from relatively simple substrates in good to high yields.

6.
J Am Chem Soc ; 145(35): 19354-19367, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37625247

RESUMO

In order to use holes as catalysts, the oxidized product should be able to transfer the hole to a fresh reactant. For that, the hole-catalyzed reaction must increase the oxidation potential along the reaction path, i.e., lead to "hole upconversion." If this thermodynamic requirement is satisfied, a hole injected via one-electron oxidation can persist through multiple propagation cycles and serve as a true catalyst. This work provides guidelines for the rational design of hole-catalyzed Diels-Alder (DA) reactions, the prototypical cycloaddition. After revealing the crucial role of hyperconjugation in the absence of hole upconversion in the parent DA reaction, we show how upconversion can be reactivated by proper substitution. For this purpose, we computationally evaluate the contrasting effects of substituents at the three possible positions in the two reactants. The occurrence and magnitude of hole upconversion depend strongly on the placement and nature of substituents. For example, donors at C1 in 1,3-butadiene shift the reaction to the hole-upconverted regime with an increased oxidation potential of up to 1.0 V. In contrast, hole upconversion in C2-substituted 1,3-butadienes is activated by acceptors with the oxidation potential increase up to 0.54 V. Dienophile substitution results in complex trends because the radical cation can be formed at either the dienophile or the diene. Hole upconversion is always present in the former scenario (up to 0.65 V). Finally, we report interesting stereoelectronic effects that can activate or deactivate upconversion via a conformational change.

7.
J Org Chem ; 88(11): 6868-6877, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37216317

RESUMO

Ureas are often thought of as "double amides" due to the obvious structural similarity of these functional groups. The main structural feature of an amide is its planarity, which is responsible for the conjugation between the nitrogen atom and carbonyl moiety and the decrease of amide nucleophilicity. Consequently, since amides are poor nucleophiles, ureas are often thought of as poor nucleophiles as well. Herein, we demonstrate that ureas can be distinctly different from amides. These differences can be amplified by rotation around one of the ureas' C-N bonds, which switches off the amide resonance and recovers the nucleophilicity of one of the nitrogen atoms. This conformational change can be further facilitated by the judicious introduction of steric bulk to disfavor the planar conformation. This change in reactivity is an example of "stereoelectronic deprotection," a concept when the desired reactivity of a functional group is produced by a conformational change rather than a chemical modification. This concept may be used complementarily to the traditional protecting groups. We also demonstrate both the viability and the utility of this concept by the synthesis of unusual 2-oxoimidazolium salts possessing quaternary nitrogen atoms at the urea moiety.

8.
Nat Rev Chem ; 7(6): 405-423, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37117812

RESUMO

One of the simplest organic functional groups, the alkyne, offers a broad canvas for the design of cascade transformations in which up to three new bonds can be added to each of the two sterically unencumbered, energy-rich carbon atoms. However, kinetic protection provided by strong π-orbital overlap makes the design of new alkyne transformations a stereoelectronic puzzle, especially on multifunctional substrates. This Review describes the electronic properties contributing to the unique utility of alkynes in radical cascades. We describe how to control the selectivity of alkyne activation by various methods, from dynamic covalent chemistry with kinetic self-sorting to disappearing directing groups. Additionally, we demonstrate how the selection of reactive intermediates directly influences the propagation and termination of the cascade. Diverging from a common departure point, a carefully planned reaction route can allow access to a variety of products.


Assuntos
Alcinos , Carbono , Alcinos/química , Carbono/química , Cinética
9.
J Org Chem ; 88(4): 2648-2654, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36752409

RESUMO

AIBN is a convenient electrophilic cyanation reagent for transforming ArLi into ArCN under mild conditions. The addition/fragmentation cascade is controlled by Li···N chelation in which AIBN nitrogens assist in the nearly barrierless fragmentation into the desired ArCN product. Acidic C-H bonds in the fragmented byproduct partially consume ArLi by protonation. Density functional theory calculations and isotopic labeling probe the mechanism and explain the switch to substituted hydrazones in reactions with BuLi.

10.
J Am Chem Soc ; 144(51): 23448-23464, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36516873

RESUMO

This work introduces an approach to uncoupling electrons via maximum utilization of localized aromatic units, i.e., the Clar's π-sextets. To illustrate the utility of this concept to the design of Kekulé diradicaloids, we have synthesized a tridecacyclic polyaromatic system where a gain of five Clar's sextets in the open-shell form overcomes electron pairing and leads to the emergence of a high degree of diradical character. According to unrestricted symmetry-broken UCAM-B3LYP calculations, the singlet diradical character in this core system is characterized by the y0 value of 0.98 (y0 = 0 for a closed-shell molecule, y0 = 1 for pure diradical). The efficiency of the new design strategy was evaluated by comparing the Kekulé system with an isomeric non-Kekulé diradical of identical size, i.e., a system where the radical centers cannot couple via resonance. The calculated singlet-triplet gap, i.e., the ΔEST values, in both of these systems approaches zero: -0.3 kcal/mol for the Kekulé and +0.2 kcal/mol for the non-Kekulé diradicaloids. The target isomeric Kekulé and non-Kekulé systems were assembled using a sequence of radical periannulations, cross-coupling, and C-H activation. The diradicals are kinetically stabilized by six tert-butyl substituents and (triisopropylsilyl)acetylene groups. Both molecules are NMR-inactive but electron paramagnetic resonance (EPR)-active at room temperature. Cyclic voltammetry revealed quasi-reversible oxidation and reduction processes, consistent with the presence of two nearly degenerate partially occupied molecular orbitals. The experimentally measured ΔEST value of -0.14 kcal/mol confirms that K is, indeed, a nearly perfect singlet diradical.

11.
J Phys Chem A ; 126(48): 8976-8987, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36414392

RESUMO

Significant differences in the photochemical and photophysical behavior of trans-α-methylstilbene and trans-stilbene have been attributed to structural changes caused by the steric requirements of the methyl group. We present here the X-ray structures of cis- and trans-α-methylstilbene (c- and t-MeSt). This is the first X-ray structure of a cis-stilbene. Despite the pronounced departure from phenyl group coplanarity, the solid-state packing of t-MeSt resembles that of trans-stilbene in that both exhibit disorder with a bicycle pedal structural relationship, dynamic in t-St but static in t-MeSt. We compare the X-ray structures with calculated structures. We also compare our steady state and transient photochemical and spectroscopic results with predictions in a recent theoretical paper that anticipated some of our experiments. Deviations from planarity imposed by the methyl substitution account for the shorter lifetimes of the trans excited states. The rapid torsional relaxation of 1t-MeSt* to the twisted intermediate 1p*, ktp = 2.9 × 1012 s-1, observed using fs transient absorption spectroscopy, explains the sharp decrease in the fluorescence quantum yield of t-MeSt. We correct misconceptions that have appeared in the literature concerning the shape of the stilbene potential energy surface in S1. The nonplanarity due to methyl substitution leads to chirality issues that are relevant in biological molecules such as the protonated Schiff bases of retinal in the opsins.


Assuntos
Fotoquímica
12.
J Org Chem ; 87(21): 13980-13989, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36223346

RESUMO

The reactions of O-electrophiles, such as organic peroxides, with carbon nucleophiles are an umpolung alternative to the common approaches to C-O bond formation. Nucleophilic substitution at the oxygen atom of cyclic diacyl peroxides by enol acetates with the following deacylation leads to α-acyloxyketones with an appended carboxylic acid in 28-87% yields. The effect of fluorinated alcohols on the oxidative functionalization of enol acetates by cyclic diacyl peroxides was studied experimentally and computationally. Computational analysis reveals that the key step proceeds as a direct substitution nucleophilic bimolecular (SN2) reaction at oxygen (SN2@O). CF3CH2OH has a dual role in assisting in both steps of the reaction cascade: it lowers the energy of the SN2@O activation step by hydrogen bonding to a remote carbonyl and promotes the deacylation of the cationic intermediate.


Assuntos
Álcoois , Peróxidos , Peróxidos/química , Solventes , Acetatos , Oxigênio
13.
Org Lett ; 24(36): 6582-6587, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36070396

RESUMO

Counterintuitively, the low basicity of the NH2 group in hydrazides makes them preferred nucleophiles for the synthesis of the N-substituted azaozonides in acid-catalyzed three-component condensation with 1,5-diketones and H2O2. In the case of more basic N sources, e.g., hydrazine and primary amines, such condensation does not occur under these reaction conditions. The method can be applied to a wide range of hydrazides and affords the target bicyclic azaozonides in 27-86% yields.

14.
Chemistry ; 28(60): e202201637, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-35880945

RESUMO

Traditionally, cross-dehydrogenative coupling (CDC) leads to C-N bond formation under basic and oxidative conditions and is proposed to proceed via a two-electron bond formation mediated by carbenium ions. However, the formation of such high-energy intermediates is only possible in the presence of strong oxidants, which may lead to undesired side reactions and poor functional group tolerance. In this work we explore if oxidation under basic conditions allows the formation of three-electron bonds (resulting in "upconverted" highly-reducing radical-anions). The benefit of this "upconversion" process is in the ability to use milder oxidants (e. g., O2 ) and to avoid high-energy intermediates. Comparison of the two- and three-electron pathways using quantum mechanical calculations reveals that not only does the absence of a strong oxidant shut down two-electron pathways in favor of a three-electron path but, paradoxically, weaker oxidants react faster with the upconverted reductants by avoiding the inverted Marcus region for electron transfer.

15.
J Am Chem Soc ; 144(27): 12321-12338, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35652918

RESUMO

We describe reductive dehydrogenative cyclizations that form hepta-, nona-, and decacyclic anionic graphene subunits from mono- and bis-helicenes with an embedded five-membered ring. The reaction of bis-helicenes can either proceed to the full double annulation or be interrupted by addition of molecular oxygen at an intermediate stage. The regioselectivity of the interrupted cyclization cascade for bis-helicenes confirms that relief of antiaromaticity is a dominant force for these facile ring closures. Computational analysis reveals the unique role of the preexisting negatively charged cyclopentadienyl moiety in directing the second negative charge at a specific remote location and, thus, creating a localized antiaromatic region. This region is the hotspot that promotes the initial cyclization. Computational studies, including MO analysis, molecular electrostatic potential maps, and NICS(1.7)ZZ calculations, evaluate the interplay of the various effects including charge delocalization, helicene strain release, and antiaromaticity. The role of antiaromaticity relief is further supported by efficient reductive closure of the less strained monohelicenes where the relief of antiaromaticity promotes the cyclization even when the strain is substantially reduced. The latter finding significantly expands the scope of this reductive alternative to the Scholl ring closure.


Assuntos
Ciclização , Ânions
16.
Org Lett ; 24(21): 3817-3822, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35609004

RESUMO

We show that the carboxylate radical acts as an L-ligand with certain high-spin transition metal centers. Such coordination preserves the O-radical character needed for C-H activation via hydrogen atom transfer. Capture of the new C-radical by the metal and subsequent reductive elimination leads to formal C-H acyloxylation. Decarboxylation of the RCO2 radical is minimized through hybridization effects introduced by spiro-cyclopropyl moiety.

17.
J Org Chem ; 87(8): 5371-5384, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35363496

RESUMO

New antioxidants are commonly evaluated via two main approaches, i.e., the ability to donate an electron and the ability to intercept free radicals. We compared these approaches by evaluating the properties of 11 compounds containing both antioxidant moieties (mono- and polyphenols) and auxiliary pharmacophores (pyrrolidone and caprolactam). Several common antioxidants, such as butylated hydroxytoluene (BHT), 2,3,5-trimethylphenol (TMP), quercetin, and dihydroquercetin, were added for comparison. The antioxidant properties of these compounds were determined by their rates of reaction with 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and their oxidation potentials from cyclic voltammetry. Although these methods test different chemical properties, their results correlate reasonably well. However, several exceptions exist where the two methods give opposite predictions! One of them is the different behavior of mono- and polyphenols: polyphenols can react with DPPH more than an order of magnitude faster than monophenols of a similar oxidation potential. The second exception stems from the size of a "bystander" lactam ring at the benzylic position. Although the phenols with a seven-membered lactam ring are harder to oxidize, the sterically nonhindered compounds react with DPPH about 2× faster than the analogous five-membered lactams. The limitations of computational methods, especially those based on a single parameter, are also evaluated and discussed.


Assuntos
Antioxidantes , Caprolactama , Antioxidantes/química , Antioxidantes/farmacologia , Compostos de Bifenilo/química , Hidroxitolueno Butilado/química , Fenóis/química , Picratos/química , Polifenóis , Pirrolidinonas
18.
J Am Chem Soc ; 144(16): 7264-7282, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35418230

RESUMO

Stable tricyclic aminoperoxides can be selectively assembled via a catalyst-free three-component condensation of ß,δ'-triketones, H2O2, and an NH-group source such as aqueous ammonia or ammonium salts. This procedure is scalable and can produce gram quantities of tricyclic heterocycles, containing peroxide, nitrogen, and oxygen cycles in one molecule. Amazingly, such complex tricyclic molecules are selectively formed despite the multitude of alternative reaction routes, via equilibration of peroxide, hemiaminal, monoperoxyacetal, and peroxyhemiaminal functionalities! The reaction is initiated by the "stereoelectronic frustration" of H2O2 and combines elements of thermodynamic and kinetic control with a variety of mono-, bi-, and tricyclic structures evolving under the conditions of thermodynamic control until they reach a kinetic wall created by the inverse α-effect, that is, the stereoelectronic penalty for the formation of peroxycarbenium ions and related transition states. Under these conditions, the reaction stops before reaching the most thermodynamically stable products at a stage where three different heterocycles are assembled and fused at the acyclic precursor frame.


Assuntos
Peróxido de Hidrogênio , Peróxidos , Catálise , Peróxido de Hidrogênio/química , Peróxidos/química , Termodinâmica
19.
Molecules ; 26(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34833979

RESUMO

The interaction of acetamidine and phenylamidine with peri-R-ethynyl-9,10-anthraquinones in refluxing n-butanol leads to the formation of cascade transformations products: addition/elimination/cyclization-2-R-7H-dibenzo[de,h]quinolin-7-ones and(or) 2-R-3-aroyl-7H-dibenzo[de,h]quinolin-7-ones. The anti-inflammatory and antitumor properties of the new 2-R-7H-dibenzo[de,h]quinolin-7-ones were investigated in vivo, in vitro, and in silico. The synthesized compounds exhibit high anti-inflammatory activity at dose 20 mg/kg (intraperitoneal injection) in the models of exudative (histamine-induced) and immunogenic (concanavalin A-induced) inflammation. Molecular docking data demonstrate that quinolinones can potentially intercalate into DNA similarly to the antitumor drug doxorubicin.


Assuntos
Amidinas/química , Antraquinonas/química , Anti-Inflamatórios/química , Antineoplásicos/química , Quinolinas/química , Alcaloides/síntese química , Alcaloides/química , Alcaloides/farmacologia , Amidinas/síntese química , Animais , Antraquinonas/síntese química , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Técnicas de Química Sintética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Quinolinas/síntese química , Quinolinas/farmacologia
20.
Chem Soc Rev ; 50(18): 10700-10702, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34542124

RESUMO

Correction for 'Stereoelectronic power of oxygen in control of chemical reactivity: the anomeric effect is not alone' by Igor V. Alabugin et al., Chem. Soc. Rev., 2021, DOI: 10.1039/d1cs00386k.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA